Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes
نویسندگان
چکیده
The use of nanoparticles (NPs) in biology and medicine requires a molecular-level understanding of how NPs interact with cells in a physiological environment. A critical difference between well-controlled in vitro experiments and in vivo applications is the presence of a complex mixture of extracellular proteins. It has been established that extracellular serum proteins present in blood will adsorb onto the surface of NPs, forming a "protein corona". Our goal was to understand how this protein layer affected cellular-level events, including NP binding, internalization, and transport. A combination of microscopy, which provides spatial resolution, and spectroscopy, which provides molecular information, is necessary to probe protein-NP-cell interactions. Initial experiments used a model system composed of polystyrene NPs functionalized with either amine or carboxylate groups to provide a cationic or anionic surface, respectively. Serum proteins adsorb onto the surface of both cationic and anionic NPs, forming a net anionic protein-NP complex. Although these protein-NP complexes have similar diameters and effective surface charges, they show the exact opposite behavior in terms of cellular binding. In the presence of bovine serum albumin (BSA), the cellular binding of BSA-NP complexes formed from cationic NPs is enhanced, whereas the cellular binding of BSA-NP complexes formed from anionic NPs is inhibited. These trends are independent of NP diameter or cell type. Similar results were obtained for anionic quantum dots and colloidal gold nanospheres. Using competition assays, we determined that BSA-NP complexes formed from anionic NPs bind to albumin receptors on the cell surface. BSA-NP complexes formed from cationic NPs are redirected to scavenger receptors. The observation that similar NPs with identical protein corona compositions bind to different cellular receptors suggested that a difference in the structure of the adsorbed protein may be responsible for the differences in cellular binding of the protein-NP complexes. Circular dichroism spectroscopy, isothermal titration calorimetry, and fluorescence spectroscopy show that the structure of BSA is altered following incubation with cationic NPs, but not anionic NPs. Single-particle-tracking fluorescence microscopy was used to follow the cellular internalization and transport of protein-NP complexes. The single particle-tracking experiments show that the protein corona remains bound to the NP throughout endocytic uptake and transport. The interaction of protein-NP complexes with cells is a challenging question, as the adsorbed protein corona controls the interaction of the NP with the cell; however, the NP itself alters the structure of the adsorbed protein. A combination of microscopy and spectroscopy is necessary to understand this complex interaction, enabling the rational design of NPs for biological and medical applications.
منابع مشابه
The protein-nanoparticle interaction (protein corona) and its importance on the therapeutic application of nanoparticles
Nanobiotechnology has provided promising novel diagnostic and therapeutic strategies which capable to create a broad spectrum of nano-based imaging agents and medicines for human administrations. Several studies have demonstrated that the surface of nanomaterials is immediately coated with suspended proteins after contact with plasma or other biological fluids to form protein corona-nanoparticl...
متن کاملEffects of T208E activating mutation on MARK2 protein structure and dynamics: Modeling and simulation
Microtubule Affinity-Regulating Kinase 2 (MARK2) protein has a substantial role in regulation of vital cellular processes like induction of polarity, regulation of cell junctions, cytoskeleton structure and cell differentiation. The abnormal function of this protein has been associated with a number of pathological conditions like Alzheimer disease, autism, several carcinomas and development of...
متن کاملSecondary Structure of Corona Proteins Determines the Cell Surface Receptors Used by Nanoparticles
Nanoparticles used for biological and biomedical applications encounter a host of extracellular proteins. These proteins rapidly adsorb onto the nanoparticle surface, creating a protein corona. Poly(ethylene glycol) can reduce, but not eliminate, the nonspecific adsorption of proteins. As a result, the adsorbed proteins, rather than the nanoparticle itself, determine the cellular receptors used...
متن کاملEffects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells.
Nanoparticles enter cells through active processes, thanks to their capability of interacting with the cellular machinery. The protein layer (corona) that forms on their surface once nanoparticles are in contact with biological fluids, such as the cell serum, mediates the interactions with cells in situ. As a consequence of this, here we show that the same nanomaterial can lead to very differen...
متن کاملDirect observation of a single nanoparticle-ubiquitin corona formation.
The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein ...
متن کاملProtein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles.
Using quantitative models to predict the biological interactions of nanoparticles will accelerate the translation of nanotechnology. Here, we characterized the serum protein corona 'fingerprint' formed around a library of 105 surface-modified gold nanoparticles. Applying a bioinformatics-inspired approach, we developed a multivariate model that uses the protein corona fingerprint to predict cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 47 شماره
صفحات -
تاریخ انتشار 2014